skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, Robert S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rock glaciers dominate the cryosphere in mid‐latitude alpine settings, yet their activity and their histories remain challenging to constrain. We focus on the Thomas Lake rock glacier on Mt. Sopris in Colorado, USA. We measure surface velocities by feature tracking of image pairs and document Holocene10Be exposure ages on surface debris. The surface speeds average 0.8 m/yr and peak at 2 m/yr in a steep reach. Exposure ages range from 1.4 to 13.2 kyr and monotonically increase down‐glaciers. Ages exceeding 6 kyr occur in the bottom quarter of the landform, coinciding with sporadic tree cover. These constraints constrain a numerical model of Holocene rock glacier activity. In our model, surface velocity is entirely explained by the deformation of the ice‐rich core with the extra load of the rocky carapace. Surface mass balance is simplified to an accumulation area of ice and debris equivalent to the avalanche cone, and very low, uniform ablation in the remaining rock glacier where rock cover minimizes melt. Climate drives the activity through a history of ice accumulation in the avalanche cone. Matching the observed age and speed structure requires: (a) Early Holocene growth of the rock glacier, (b) low accumulation during the middle Holocene warm period (Hypsithermal), and (c) two Neoglacial accumulation pulses, the most recent being the Little Ice Age. Pulses travel down the valley as kinematic waves, re‐activating the landform. The headwall retreat rate of 4 mm/yr, inferred from rocky layer thickness and surface speed, far outpaces bedrock down wearing rates. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Beddoe, Riley; Karunaratne, Kumari (Ed.)
    Permafrost holds more than twice the amount of carbon currently in the atmosphere, but this large carbon reservoir is vulnerable to thaw and erosion under a rapidly changing Arctic climate. Convective storms are becoming increasingly common during Arctic summers and can amplify runoff and erosion. These extreme events, in concert with active layer deepening, may accelerate carbon loss from the Arctic landscape. However, we lack measurements of carbon fluxes during these events. Rivers are sensitive to physical, chemical, and hydrological perturbations, and thus are excellent systems for studying landscape responses to thunderstorms. We present observations from the Canning River, Alaska, which drains the northern Brooks Range and flows across a continuous permafrost landscape to the Beaufort Sea. During summer 2022 and 2023 field campaigns, we opportunistically monitored river discharge, sediment, and organic carbon fluxes during several thunderstorms. During one notable storm, river discharge nearly doubled from ~130 m3/s to ~240 m3/s, suspended sediment flux increased 70-fold, and the particulate organic carbon (POC) flux increased 90-fold relative to non-storm conditions. Taken together, the river exported ~16 metric tons of POC over one hour of this sustained event, not including the additional flux of woody debris. Furthermore, the dissolved organic carbon (DOC) flux nearly doubled. Although these thunderstorm-driven fluxes are short-lived (hours to days), they play an outsized role in exporting organic carbon from Arctic rivers. Understanding how these extreme events impact river water, sediment, and carbon dynamics will help predict how Arctic climate change will modify the global carbon cycle. 
    more » « less
  3. This dataset contains measurements of river discharge, suspended sediment, and organic carbon fluxes in the Canning River, Alaska during one field campaign from 28 June to 10 July 2022 and a second field campaign from 21 July to 2 August 2023. The purpose of this dataset is to demonstrate the impact of summer convective storms on river suspended sediment and particulate organic carbon fluxes in Arctic Rivers. During the 2022 field campaign, we rafted down the Canning River starting on the upper Canning within the headwaters and ending near the mouth at the Beaufort Sea coast. During this campaign, we selected five locations along the active channel to conduct Acoustic Doppler Current Profiler (ADCP) surveys to measure river discharge and sample the river water for suspended sediment and particulate organic carbon, where T1 is the farthest upstream transect and T5 is the farthest downstream. During the 2023 field campaign, we collected instantaneous river discharge measurements of the Canning River in the headwaters at the Marsh Fork Bench Airstrip, at the Staines Airstrip, and on the Staines branch of the Canning River delta. We observed several thunderstorms during these field campaigns, during which the river water level and suspended load increased dramatically, prompting us to sample river suspended sediment during these events. This dataset includes ADCP measurements of river water discharge, suspended sediment concentrations, particulate and dissolved organic carbon concentrations, woody debris flux measurements, and estimates of instantaneous fluxes. 
    more » « less
  4. Abstract. In late March 2011, landfast sea ice (hereafter, “fast ice”) formed in the northern Larsen B embayment and persisted continuously as multi-year fast ice until January 2022. In the 11 years of fast-ice presence, the northern Larsen B glaciers slowed significantly, thickened in their lower reaches, and developed extensive mélange areas, leading to the formation of ice tongues that extended up to 16 km from the 2011 ice fronts. In situ measurements of ice speed on adjacent ice shelf areas spanning 2011 to 2017 show that the fast ice provided significant resistive stress to ice flow. Fast-ice breakout began in late January 2022 and was closely followed by retreat and breakup of both the fast-ice mélange and the glacier ice tongues. We investigate the probable triggers for the loss of fast ice and document the initial upstream glacier responses. The fast-ice breakup is linked to the arrival of a strong ocean swell event (>1.5 m amplitude; wave period waves >5 s) originating from the northeast. Wave propagation to the ice front was facilitated by a 12-year low in sea ice concentration in the northwestern Weddell Sea, creating a near-ice-free corridor to the open ocean. Remote sensing data in the months following the fast-ice breakout reveals an initial ice flow speed increase (>2-fold), elevation loss (9 to 11 m), and rapid calving of floating and grounded ice for the three main embayment glaciers Crane (11 km), Hektoria (25 km), and Green (18 km). 
    more » « less
  5. The North Atlantic was a key locus for circulation-driven abrupt climate change in the past and could play a similar role in the future. Abrupt cold reversals, including the 8.2 ka event, punctuated the otherwise warm early Holocene in the North Atlantic region and serve as useful paleo examples of rapid climate change. In this work, we assess the cryospheric response to early Holocene climate history on Baffin Island, Arctic Canada, using cosmogenic radionuclide dating of moraines. We present 39 new 10Be ages from four sets of multi-crested early Holocene moraines deposited by cirque glaciers and ice cap outlet glaciers, as well as erratic boulders along adjacent fiords to constrain the timing of regional deglaciation. The age of one moraine is additionally constrained by in situ 14C measurements, which confirm 10Be inheritance in some samples. All four moraines were deposited between ~9.2 and 8.0 ka, and their average ages coincide with abrupt coolings at 9.3 and 8.2 ka that are recorded in Greenland ice cores. Freshwater delivery to the North Atlantic that reduced the flux of warm Atlantic water into Baffin Bay may explain brief intervals of glacier advance, although moraine formation cannot be definitively tied to centennial-scale cold reversals. We thus explore other possible contributing factors, including ice dynamics related to retreat of Laurentide Ice Sheet outlet glaciers. Using a numerical glacier model, we show that the debuttressing effect of trunk valley deglaciation may have contributed to these morainebuilding events. These new age constraints and process insights highlight the complex behavior of the cryosphere during regional deglaciation and suggest that multiple abrupt cold reversalsdas well as deglacial ice dynamicsdlikely played a role in early Holocene moraine formation on Baffin Island. 
    more » « less
  6. Abstract. When wind blows over dry snow, the snow surface self-organizesinto bedforms such as dunes, ripples, snow waves, and sastrugi. Thesebedforms govern the interaction between wind, heat, and the snowpack, butthus far they have attracted few scientific studies.We present the first time-lapse documentation of snow bedform movement and evolution, as part of a series of detailed observations of snow bedform movement in the Colorado Front Range.We show examples of the movement of snow ripples, snow waves, barchan dunes,snow steps, and sastrugi. We also introduce a previously undocumentedbedform: the stealth dune. These observations show that (1) snow dunesaccelerate minute-by-minute in response to gusts, (2) sastrugi and snow stepspresent steep edges to the wind and migrate downwind as those edges erode,(3) snow waves and dunes deposit layers of cohesive snow in their wake, and(4) bedforms evolve along complex cyclic trajectories. These observationsprovide the basis for new conceptual models of bedform evolution, based onthe relative fluxes of snowfall, aeolian transport, erosion, and snowsintering across and into the surface. We find that many snow bedforms aregenerated by complex interactions between these processes. The prototypicalexample is the snow wave, in which deposition, sintering, and erosion occurin transverse stripes across the snowscape. 
    more » « less
  7. Abstract Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate. 
    more » « less
  8. ABSTRACT Be dating of moraines has greatly improved our ability to constrain the timing of past glaciations and thus past cold events. However, the spread in ages from a single moraine is often greater than would be expected from measurement uncertainty, making paleoclimatic interpretations equivocal. Here we present 28 new10Be ages from ice‐cored Neoglacial moraines on Baffin Island, Arctic Canada, and explore the processes at play in moraine formation and evolution through field observations and a numerical debris‐covered glacier model. The insulating effect of debris cover modifies glacier lengths and results in the development of ice‐cored moraines over multiple advances and thousands of years. Although ice cores can persist for several millennia, spatially variable ice core melt‐out contributes to moraine degradation and boulder destabilization, making it likely that the10Be clock is reset on moraine boulders in these settings. Thus, exposure ages from ice‐cored moraines must be interpreted with caution. The oldest ages, after excluding samples with inheritance, provide the best estimates of initial moraine formation. Three Baffin Island moraines yield10Be ages suggesting formation at 5.2, 4.6 and 3.5 ka, respectively, adding to a growing body of evidence for significant summer cooling millennia before the Little Ice Age. 
    more » « less
  9. Abstract Generalizable relationships for how subdaily rainfall statistics imprint into runoff statistics are lacking. We use the Colorado Front Range, known for destructive rainfall‐triggered floods and landslides, to assess whether orographic patterns in runoff generation are a direct consequence of rainstorm climatology. Climatological analysis relies on a dense network of tipping‐bucket rain gauges and gridded precipitation frequency estimates from the National Oceanic and Atmospheric Administration to evaluate relationships among subdaily rainfall statistics, topography, and flood frequency throughout the South Platte River basin. We find that event‐scale rainfall statistics only weakly depend on elevation, suggesting that orographic gradients in runoff “extremes” are not simply a consequence of rainfall patterns. In contrast, bedrock exposure strongly varies with elevation in a way that plausibly explains enhanced runoff generation at lower elevations via reduced water storage capacity. These findings are suggestive of feedbacks between bedrock river evolution and hillslope hydrology not typically included in models of landscape evolution. 
    more » « less